Audio Compression using Entropy Coding and Perceptual

Noise Substitution

Kapil Krishnamurthy and Tamer Deif
MUSIC 422
Stanford University - Winter 2009

1 Motivation/Background

When compressing an audio signal there are two main concerns, the compression
rate and the quality of the decompressed audio. Tradeoffs occur according to the
application in which the codec will be used. For example, if it is used for telephony
systems compression rate is more important than quality, of course as long as the
quality of the output speech is acceptable.

In our implementation of our codec we were concerned about achieving higher
compression rates than our original (class) codec while, at least, maintaining the
same quality as our original codec. In other words, for a given bit rate, the quality of
the new codec should be better than the old one.

As we studied in this class, there are two main strategies to increase compression
rate without deteriorating the quality; either lossless compression, which does not
affect the quality of the signal at all, or lossy compression that groups its artifacts in
non-perceivable ranges by the human auditory system. In the suggested codec the
two strategies had been used. There are two main additions to our original codec;
the first one is “Perceptual Noise Substitution” (PNS) and the second is “Entropy
Coding” (more specifically, Huffman Coding).

PNS is a lossy compression technique that is based on the assumption that all white
noise sounds similar to the human being. The technique is founded on detecting the
“white-noise” like frequencies of a given audio signal and coding their power and
frequency ranges instead of coding the original data. In fact, what PNS does is that it
checks noisy bands in the signal. If a band is found to be noisy, then the whole band
is coded by the power of the signal in it, which means only one parameter (noise
power) describes the data in the whole band. This is also an introduction to
parametric coding. On the other hand, on the decoder side, the flagged noisy bands
are checked on a block-by-block basis and “white-noise” is generated and injected
into the signal at those frequency ranges.

Clearly this technique saves bits in the case of noisy audio signals, however the more
tonal the signal is, the less bits it saves. The number of bits saved, hence, vary
according to the characteristics of the input signal, whether it is noisy or not and
which bands are the noisy ones. In the following sections a more detailed
implementation will be discussed.

The different motivations behind implementing PNS, apart from bit rate reduction,
are that it takes advantage of the perception of the human auditory system, which
find to be an interesting topic, and that it introduces us to the idea of parametric
coding.

The definition for entropy is basically the measure of randomness of a system.
Entropy coding is a form of coding that replaces a particular symbol in a given bit
stream by a unique code word. The code word may be constructed in several
different ways depending on the method employed. Similarly, by the same method
we can obtain the original symbol back from the code word.

Entropy coding is done past the quantization stage prior to bit packing and
transmitting the bit stream. The main motivation for using entropy coding is to
achieve lossless compression. Using entropy coding, we basically replace frequently
occurring symbols in the mantissa for each critical band with a code that is typically
smaller than the original symbol. In this manner, we reduce the number of
transmitted data bits, which gives us more compression of the stored audio file.

There are several types of entropy coding. Some of the commonly used ones are
Huffman coding, Arithmetic coding and Rice coding. For our coder, we have used
Huffman entropy coding.

2 System Overview

The overall system is very similar to the typical perceptual audio coder; figure 1
shows a block diagram of the system. On the encoder side, normally, there are two
paths; one for the actual encoding and the other is for perceptual modeling. The
perceptual modeling determines masking effects and bit allocation. In our
implementation we added a third branch for prediction and noise detection. The
output of those two blocks is the noise substitution flags for the frequency bands.
These flags are then used by the mainstream coding steps to detect how to code the
data (determine bit allocation for noisy bands as well as data to put in the scale
factor). After the bit allocation, quantization takes place and then Huffman coding.

Percoptual

Augio | Quantization Bitstream | Bitstsam
Inpua & Coding Muttiplexer Out
A I}
Noisa subat. signatng
Substituted signal energies

Encoder

S T G T S S SN SR NS SN AR NS A e S S S A N N S N SR SRS S S T SN SN SED D TS NN NN GES

Decoder
Inverse Bitstream v
Quantization Demuttiplexer In
Noise | Noise subet. signaling
Generator Substiuted aignal enorgies

Figure 1: General System Block Diagram

Audio Synthesis
Output Filterbank

The exact opposite of the mainstream coding steps take place on the decoder.
Huffman decoding is done, followed by de-quantization of the non-noisy bands and
then generating noise with the corresponding power for the noisy bands. Finally
and time transform is run on the data to reconstruct the time domain signal.

2.1 PNS

The PNS algorithm is a simple one. The input signal is fed to a frequency transform
stage, and then the spectrum of the signal is examined for noisy bands. One of the
reasons for which the noise detection is done on band basis is that it will be simpler
to encode/decode as will be shown later on in the implementation section. To
detect noise, a prediction algorithm is used where the predictor tries to anticipate
the following sample of the signal based on previous sampled from the same signal.
The reason this works is that, basically, white noise is unpredictable, so whenever
the predictor fails to follow the signal a noisy band is present (on a side note, this is
the same for measuring tonality in a signal; the more accurately the predictor
follows the signal, the higher its tonality index is).

A decision stage comes after the noise has been detected, where the system
determines whether to substitute the noise in the detected bands or not. There are
several issues to consider before substituting for the detected bands with noise.
One of the issues is the risk that our detector might have detected a tonal band as
noise. Of course, if a tonal band is substituted for by noise, then signal quality is
immediately destroyed. In order to avoid this case, few measures are considered.
The first one is the variation among different bands; if a noisy band is detected
however its neighboring bands (immediate left and right neighbors) are not noisy as
well, then it is considered tonal and noise substitution is not conducted for that
band. Another measure is the power distribution within a noisy band, if the

variance between the powers of the individual frequency lines in a noisy band is
high (to be more precise, some measures like variance-to-mean ratio are
conducted), then the content of this band is considered tonal and no noise
substitution is done. Some other measures can be conducted, like variation of noise
power with a group of three bands. In addition to the pervious issue, there are other
problems that have to do with human perception that must be taken into account.
For example, usually no noise substitution is done for frequencies below 5 KHz. Our
auditory system is very sensitive in that frequency range, and therefore the ear can
more distinctively detect noise. Another concern is the amount of noise injected
into the signal, PNS can be potentially overused if we implement it for every noisy
band detected. This in general would lead to degrading the quality of the signal.
Hence, usually the noisy bands are sorted in terms of their noisiness and only few of
them (20-40%) go through noise substitution (of course after passing the rest of the
tests mentioned above).

After examining the noisy bands, the power of the ones that pass the previous tests
are measured and stored in the scale factor bits for the corresponding sub-band.
The mantissa bits for those bands are free to be used by other “non-noisy” bands,
which allows for higher compression rates. Finally, the noisy band has to be flagged
somehow so that the decoder understands them. One possible way to do this is to
out the flag information in the header of each block. Another possible way is to use
a special code and allocate bits for that code to be sent for only noisy bands.

On the decoder side, the first thing that is done is checking the flags (regardless the
way the are sent). Then for the corresponding bands, white noise is generated in
the frequency domain with power equal to the values read from the noisy bands
scale factors. Finally, an inverse frequency transform is conducted to have the
signal back in time domain.

2.2 Huffman Coding

Huffman coding is regarded as one of the most successful compression techniques
available today. It is used commonly for compression of both audio and images. For
the generation of the codes based on the frequency of input symbols, the first step is
to construct a Huffman table.

A typical Huffman table for the input stream X=[{456 6254 4 14 4] is shown in
figure 2.

Input symbol ~ Probability ~ Huffman codeword

3/11 11
311 10
2/11 01
2/11 001
/11 000

Input symbols 1 2 6 5 4

—_ N O\ DN

Huffman codewords 000 001 01 10 1

Figure 2: Huffman tree and corresponding table

Symbols are arranged in the decreasing order of frequency (increasing order of
probability of occurrence). The main constituents of a Huffman tree are nodes and
leaves. At each step, we compute the two leaves of lowest probability and then club
them together to form a node. In this manner, the tree is constructed in a bottom up
approach over N-1 steps where N is the number of symbols. To each left going path,
a 0 is assigned and to each right going path, a 1 is assigned. In order to construct the
code corresponding to a given symbol, move down the tree in a top down approach
and build up the code for that symbol.

There are several variations of Huffman coding that can be implemented. The three
main types of Huffman coding can be summarized as non-adaptive, semi - adaptive
and adaptive Huffman coding.

The non-adaptive Huffman coding model is one that is typically used in audio
coders. Basically, a number of Huffman tables are constructed for different
frequency bands and also different genres of music. It is essential to have a reliable
symbol to frequency mapping, so a lot of training data is used to prepare these
tables.

Semi adaptive Huffman coding is also known as the ‘two pass’ encoding scheme. In
the first pass, a Huffman code table is designed based on the input symbol statistics.
In the second pass, entropy coding performed using the designed Huffman code
table. In this scheme, the designed Huffman code tables must be transmitted along
with the entropy coded bit stream.

Adaptive Huffman coding uses prediction techniques to compute the symbol
frequencies based on the previous samples. The advantage to this is that the source
can be coded in real time. However, a single error can lead to the loss of all the data.

The next section shows more details of the implementation of the described steps.
3 Implementation

Our implementation is built on the coded implemented in class, so in this section we
will only discuss our implementation to the added features to the codec, namely PNS
and Huffman Coding.

For the Noise detection stage of the PNS we implemented a predictor. The function
of the predictor, as mentioned earlier, is to predict the signal from its past samples
and depending on how successful it is we decide how noisy is our signal (remember
that noise is impossible to predict). The function used for prediction is:

P(n) = 2% P(n-1)- P(n-2)

Where P(n) is the prediction of the current sample, and P(n-1),P(n-2) are the

actual values of the two previous samples. The prediction stage is conducted on the
FFT of the original signal. FFT is chosen because it provides a higher frequency
resolution than MDCT.

After prediction a noise index for each band is measured using the following
equation:

>IP0)

Where j is the index for the sub-band number, i is the index for the sample number
in the jt" sub-band, P is the same as before and N is the noise index. This function is
just a normalized summation of the error of the predictor, which represents our
noise index. For a sub-band to be noisy, its noise index must be above a certain
threshold. After testing on a white noise signal and observing the average noise
index for the sub-bands, a threshold of 0.5 was determined. More accurate
thresholds can be obtained using different combinations of data; also an
independent threshold can be used for each band. Figure 3 shows a graph of the
noise index for a tonal signal vs. white noise.

13 | e
AN i / |
o]\ | [/
~ AN LW YA |
PRI | L |
05 \ \%_ \3 / s \ v / . \ }
../ | 1 Lo |
al. | \ Lo E /
ol Lo f
/ L] |

Critical Band

Figure 3: Comparison of Noise Index for White Noise vs Tonal signals

After calculating the noise index, the tests mentioned in the previous section are
conducted to examine the system’s confidence about the noise substitution decision.

Finally, the noise flags are set by the previous stage and accordingly no bits are
allocated to flagged bands, the noise flags are added to the header of the block and
sent to the decoder, and power is measured for those bands by summing the square
of the spectrum amplitudes and coded in place of the scale factor of the
corresponding bands by uniformly quantizing it.

On the decoder side, the header for each block is read and the noise substitution
flags are extracted. For noisy bands, the scale factor is read and de-quantized to
generate white noise with the corresponding power. The white noise is generator
using a random number generator, and scaling it with the noise power in the band.
This is added to the decoded MDCT values for the rest of the signal to reconstruct
the whole frequency domain representation of the data before PNS. This is the
input to the inverse MDCT to recover the time domain signal. Figure 4 shows a
white noise input and the output of the noise generation function when it is all
considered to be noisy vs. when the Noise detection algorithm is run on it.

Figure 4: On the left is white noise generation when all input is not filtered. On the
right is filtered white noise output.

In this project we have designed a non-adaptive Huffman coder, which involves
having a static table at the encoder and decoder with the list of symbols and their
respective codes. This list varies per critical frequency band and also with the
number of mantissa bits taken into consideration. The lists were constructed by
training the coder with different genres of music like pop, rock, electronic and
classical.

The first step to the implementation involves constructing the reference tables for
the different symbols and their respective codes. To do this, we turned off the bit
allocation algorithm and allocated a fixed number of mantissa bits during block
quantization. The number of mantissa bits spanned the range of 2 to 8 and for each
value of mantissa bits, we calculated the frequency of occurrence of all the symbols
for the 25 critical bands. Doing this step is useful because just by looking the tables,
we can see that for many types of signals, the frequency of zeros at the highest
critical bands is very high. This enables us to do things like club the lists for those
bands together or even omit the mantissas of those bands. Figure 5 shows the
frequency of 5-mantissa bit values for different music genres.

Electronic music - 5 mantissa bits
: Pop music - 5 mantissa bits

x10°
x10

Frequency
o

Frequency
o

Symbols Band number

Symbols Band number
Rock music - 5 mantissa bits
Classical music — 5 mantissa bits

x10

Symbols 00

Band number
Symbols

Sand number

Figure 5: Comparison of 5-mantissa bit values among different music genre

The next step involves converting the frequencies of all the symbols to equivalent
Huffman codes by constructing a Huffman table for each critical band. In our case,
this was done with the help of Matlab. Using the Matlab file [/O options, we had the
Huffman table in a reference able format.

At the encoder end, once the bit allocation algorithm is completed and certain
number of bits have been allocated to each of the critical bands for block
quantization, we use the Huffman functions to search for the equivalent code
corresponding to the mantissa symbol. This code is written into the bit stream in
place of the mantissa. The important factor to be considered here is that the
mantissa is first separated into its magnitude and sign parts and they are coded in
separately.

Similarly, at the decoder end, once all the usual parameters such as the scale factors
and bit allocation information have been retrieved from the bit stream, we extract
the Huffman code and the sign. Using this information, we can locate the original
mantissa symbol from the table and apply its sign back to it.

4 Results

The following table shows a comparison between the compression rates of three
different decoders. The first one is the normal 128 Kbps decoder, the other two are
Huffman and Huffman with PNS. The results of this table are all based on 128Kbps
target rate.

Codec Classical | Rock | Dance Pop | Castanets | Organ | Speech
128 5.514 5.505 | 5.580 | 5.358 5.368 5.530 5.281
Huffman 6.637 6.400 | 6.500 | 6.312 6.051 7.353 6.035
Huffman/PNS | 6.700 6.650 | 6.908 | 6.583 6.163 7.353 6.260

It is obvious that Huffman gives us same quality, for a target bit rate, but with higher
compression, for all kinds of audio. The most outstanding result was for the Organ,
which is a highly tonal signal. Moreover, the PNS increases compression rate in
most cases. However, it is noticeable that PNS did not add anything to the
compression rate in the Organ signal, which is a very tonal signal and apparently no
noise was detected in it.

The next figure summarizes the performance of the codecs in terms of quality of
output. The tests are based on the ITU-R 5-grade impairment scale, double-blind
triple-stimulus tests. Note that the maximum number of bits per mantissa was
limited to 8 bits, due to the availability of Huffman tables only up to that number of
mantissa bits. This would reduce the quality of the codecs in general, but relative to
each other they should remain the same.

-0.1 - i kjce

ol | _

-0.3 — E128Kbps
-0.4 — EHuffman

-0.5 B Huffman/PNS
-0.6

-0.7
-0.8

0 T T T 1

.05 - Pop ic Rock Dance.
1 - = =

- X 96Kbps
& Huffman

Huffman/PNS

-3.5

Figure 6: Comparison of quality test between coders for different genres of Music

Figure 6 shows that Huffman and non-Huffman coding are very close in
performance while PNS differs according to the signal type. Figure 7 shows another
summary of performance of the coders when applied to tonal, speech and impulsive
signal (castanets).

0 B
0.2 1 &
0.4 =
-0.6 - £128Kbps
-0.8 - & Huffman

-1 - Huffman/PNS

-1.2

-1.4

-1.6

Figure 7: Comparison of quality test between coders for different types of signals

5 Conclusion/Future work

As the results showed, Huffman coding gives a great deal of compression gain. Of
course the fact that this is lossless, makes it a very attractive option for any coder -
high compression rate with no degradation in quality. The main disadvantage of
Huffman coding is that it requires more computational power and time. This might
be a problem for real-time codec (e.g. streaming applications), however with some
code optimization and the continuous advancement in processors power it should
be fine.

On the other hand, PNS is not as powerful as Huffman for few reasons. The first is
that it is a lossy coding technique, so the coded signal can never be exactly
reconstructed. Another reason is that it does not provide high compression rate, it
helps but not too much. Although, both, Huffman and PNS provide variable
compression rates that are dependent on the input to the codec, Huffman is more
guaranteed to compress the signal. For example if the signal is not noisy, i.e. highly
tonal, then theoretically no PNS takes place and hence no compression at all,
however this is not the case with Huffman (it would only fail for abnormal signals
with all values corresponding to the longer Huffman codes). Meanwhile, PNS would
be a great addition for noisy signals.

It must be said that there is a huge amount of work that can be done to extend both
PNS and Huffman. So for PNS, some work can be done on better noise detection
algorithm, especially with coming up with more accurate thresholds. Also, more
work to decide whether a band is noisy or not, for example some algorithms
measure the variance in average power between groups of three bands and high
variance means the signal is not noisy. Another issue to be taken care of is NS with
stereo coding (which was not implemented here). In stereo coding, noise
substitutions may lead to undesired correlation/non-correlation between the two
channels that is not present in the original signal. This is one of the reasons for
doing NS only for bands above 5 KHz, because below those frequencies is the range
where the human auditory system is most sensitive to those artifacts.

For Huffman coding, we only implemented straightforward coding on a symbol-by-
symbol basis. There are a lot of extensions that can be done and lead to higher
compression rate. For example, vectorized Huffman coding for select critical bands
is very famous (where you apply Huffman on several symbols instead of only one).
This is beneficial in bands where there is a high repetition of certain symbols.
Usually the last 2 - 3 critical bands have a high percentage of zeros because the
input signal lacks high frequency content of that order. Using vectorized coding,
several bits can be saved by grouping the repeating symbols together and replacing
them by a single code. Vectorized quantization can also be applied to more than just
a few bands if we have a higher probability of several symbols being grouped
together. To achieve this, we can use the Burrow-Wheeler transform coupled with
the Move to Front algorithm. These two modules are applied on the mantissa of the
code and then sent to the vectorized Huffman routine.

Also, the entropy coding technique can be applied on the scale factor and header
information for further compression. One more thing that can be implemented is
coding of run streams of zeros or ones (kind of similar to vectorized Huffman).

6 References

1)

2)

3)

4)

5)

6)

7)

8)

9

“ Audio Signal Processing and Coding’ by Andreas Spanias, Ted Painter and
Venkatraman Atti

‘Sampled-Data Audio Signal Compression with Huffman Coding’ by Shinjiro
Ashida, Hironori Kakemizu, Masaaki Nagahara and Yutaka Yamamoto

‘Improving Audio Codecsby Noise Substitution’ by Donald Schulz

‘The MPEG-4 General Audio Coder’ by Bernhard Grill

‘A Tutorial on MPEG/Audio Compression ‘ by Davis Pan

‘Implementation of MPEG-4 Audio Components on Various Platforms’ by
Bernhard Grill, S tefan Geyersberger, Johannes Hilpert, and Bodo Teichmann

‘Extending the MPEG-4 AAC Codec by Perceptual Noise Substitution’ by Jiirgen
Herre, Donald Schulz

‘Advanced Software Implementation of MPEG-4 AAC Audio Encoder’ by
Danijel Domazet, Mario Kovac

‘An Overview of MPEG-4 Audio Version 2’ by Heiko Purnhagen

10) ‘An MDCT Domain Frame-Loss Concealment Technique For MPEG Advanced

Audio Coding’ by Sang-Uk Ryu and Kenneth Rose

